Kurzwelle

Abstrahlung einer oberflächennahen Bodenwelle und einer an der Ionosphäre reflektierten Raumwelle (mit Multi-Hop)

Die Kurzwelle nimmt unter den Funkwellen einen besonderen Platz ein. Auf Grund ihrer großen Reichweite können Kurzwellensignale weltweit empfangen werden. Kein anderer Frequenzbereich weist eine solch große Reichweite auf. Wie auch bei Langwellen- und Mittelwellensendern wird von einer Kurzwellen-Sendeantenne sowohl eine Bodenwelle als auch eine Raumwelle ausgestrahlt. Die Bodenwelle breitet sich entlang der Erdoberfläche aus und hat eine beschränkte Reichweite, die je nach Frequenz und Sendeleistung 30 bis etwa 100 km beträgt. Die Raumwelle verlässt die Erdoberfläche, bedingt durch die Abstrahlcharakteristiken der Antenne, vor allem schräg aufwärts und erreicht die Ionosphäre in einem flachen Winkel und wird bei günstigen Bedingungen an ihr reflektiert. Im Vergleich zu Radiowellen in anderen Frequenzbereichen, wie beispielsweise Langwelle (LW), Mittelwelle (MW) und Ultrakurzwelle (UKW), zeichnet sich die Kurzwelle durch ein sehr gutes Reflexionsverhalten ihrer Raumwellen aus. Sie werden bei der drahtlosen Ausbreitung an verschiedenen Schichten der Ionosphäre reflektiert und wieder zurück zum Erdboden gestreut. Von dort können sie erneut in den Raum reflektiert werden, und so kann das Kurzwellensignal um die ganze Erde wandern (Multi-Hop). Für internationale Funkverbindungen ist die Kurzwelle daher von großer Wichtigkeit.

Im Gegensatz zu Radiosendungen auf Langwelle und Mittelwelle, bei denen bei Tag die Raumwellen in den unteren Schichten der Ionosphäre absorbiert werden, können Rundfunksendungen auf Kurzwelle ohne großen Aufwand weltweit mit einem handelsüblichen Transistorradio, das ein Kurzwellen-Frequenzband enthält (Weltempfänger), empfangen werden. Von Lang- und Mittelwellen-Sendern wird nur die Bodenwelle sicher empfangen. Deren Reichweite beträgt, unabhängig von der Tageszeit bei Mittelwellen einige 100 km und bei Langwellen bis zu 1000 km.

Reflexion an Schichten der Ionosphäre

Die Reflexion von Kurzwellen an der elektrisch leitfähigen Ionosphäre ist verlustarm, funktioniert aber nur bis zu einer einfallswinkelabhängigen Grenzfrequenz (Maximum Usable Frequency – MUF). Die Reflexion am Boden ist für den größten Teil der Erde, nämlich die leitfähigen Ozeane ebenfalls verlustarm; bei den Kontinenten ist sie von der Leitfähigkeit des Bodens, insbesondere vom Grundwasserspiegel abhängig. Die Ionosphäre wird in erster Linie durch kurzwellige Ultraviolett-Strahlung der Sonne erzeugt.

Aufbau der Ionosphärenschichten in Abhängigkeit von der Jahres- und Tageszeit

Beziehung von Abstrahlwinkel und Reflexion an der Ionosphäre

Die Elektronen- und Ionen-Dichte ist in der Mesosphäre bis zu einer Höhe von etwa 60 km praktisch Null. Darüber nimmt sie zu und erreicht (bei Tag) in der E-Schicht ein erstes Maximum. Über dieser Schicht nimmt sie etwas ab, steigt aber ab etwa 200 km Höhe wieder deutlich an. Das absolute Maximum wird in der F-Region erreicht, noch höher nimmt sie wieder langsam ab. Die unterschiedlichen Zonen in diesem Profil nennt man Ionosphärenschichten. Als erste sagten 1902 Arthur Edwin Kennelly und Oliver Heaviside unabhängig voneinander eine solche Schicht voraus. Sie heißt heute E-Schicht, frühere Bezeichnung war Kennelly-Heaviside-Schicht.

Der deutsche Physiker Hans Lassen[1] entdeckte einige Jahre vor Edward Victor Appleton in großer Höhe eine wesentlich stärker ionisierte Schicht, die heute F-Region genannt wird und für die Reflexion von Kurzwellensignalen entscheidend ist. Das Höhenprofil der Schichten, vor allem die Stärke der Ionisierung hängen stark von der Tageszeit ab, aber auch von der Jahreszeit. Den Höchstwert der Elektronen-Dichte beschreibt die kritische Frequenz foF2, deren weltweite Veränderung mithilfe der Messergebnisse vieler Stationen in Ionisationskarten erfasst wird. Alle Daten sind von der Sonnenaktivität abhängig, die langfristig bedeutende Änderungen bewirkt. Im Verlauf ihres (etwa) 11-jährigen Zyklus verschieben sich die nutzbaren Frequenzbereiche ganz erheblich.

Nachts entfällt die Sonneneinstrahlung als Ionisationsquelle. Dann lösen sich verschiedene Schichten auf durch Rekombination von Ionen und Elektronen zu ungeladenen Atomen. Die D-Schicht verschwindet nach Sonnenuntergang sehr schnell, weil die hohe Luftdichte viele Zusammenstöße bedingt. Die E-Schicht verschwindet einige Stunden nach Sonnenuntergang. Die am Tage gebildeten F1– und F2-Schichten verschmelzen zur F-Region, deren Ionisation in den Nachtstunden zwar abnimmt, jedoch nicht vollständig verschwindet.

Kurzwellensignale müssen die D- und E-Schicht passieren, bevor sie an der F2-Schicht reflektiert werden können. Sie werden bei Tag in diesen unteren Schichten oft erheblich geschwächt durch Zusammenstöße der schwingenden Elektronen mit Luft-Molekülen. Nachts, wenn sich die unteren Ionosphärenschichten aufgelöst haben, tritt diese Dämpfung nicht ein.

Die Reflexion elektromagnetischer Wellen an der F2-Schicht kann mit dem Brechungsgesetz von Snellius erklärt werden, wenn der Brechungsindex des Plasmas bekannt ist. Nach diesem, in der Optik oft benutzten Gesetz, wird eine elektromagnetische Welle beim Eintritt in ein optisch dichteres Medium zum Einfallslot hin gebrochen. Funkwellen unterhalb der Plasmafrequenz werden von den ionisierten Schichten reflektiert, ihre Bahnkurven sind in diesem Bereich gekrümmt. In der Schicht wird die Strahlrichtung immer flacher, dann horizontal und verläuft schließlich wieder abwärts. Die höhenabhängige Plasmafrequenz bewirkt, dass niedrigere Frequenzen in tieferen Schichten reflektiert werden als höhere Frequenzen; andererseits erleiden erstere aber tagsüber eine stärkere Dämpfung in den tiefen Schichten. Bei UKW-Frequenzen über 50 MHz reicht die Brechung in der F2-Schicht nie zur Totalreflexion. Sehr stark ionisierte E-Schichten jedoch können bei flachem Einfall auch (selten) Frequenzen um 50 MHz reflektieren.

In einer Höhe von 90 bis 120 km tritt sporadisch die Es-Schicht (Sporadic-E) auf; in Mitteleuropa geschieht dies meist tagsüber in den Sommermonaten. Es wird vermutet, dass langlebige Metall-Ionen, die von Meteoriten-Einschlägen stammen, zur Entstehung dieser Schicht beitragen. Ist die Ionisation der Es-Schicht sehr stark, so können Kurzwellen daran reflektiert werden und so nicht mehr zur F2-Schicht gelangen (Abdeckung). Im UKW-Bereich können dagegen Überreichweiten auftreten, wenn UKW-Signale an der Es-Schicht reflektiert werden.

Der Mögel-Dellinger-Effekt (englisch sudden ionospheric disturbance SID) Ist eine plötzlich auftretende, massive Störung des gesamten Kurzwellen-Verkehrs auf der sonnenbeschienenen Seite des Globus, die eine Viertelstunde oder etwas länger andauert [tote Viertelstunde]. Sie wird von einer harten Strahlung hervorgerufen, die die Sonne bei einer Eruption abstrahlt und kommt nur wenige Male im Jahr vor.

Aufbau der Ionosphärenschichten
Schicht Höhe Bemerkung
D ca. 70…90 km tagsüber vorhanden, Ionisation entsprechend dem Sonnenstand
E ca. 110…130 km tagsüber vorhanden, Ionisation entsprechend dem Sonnenstand
Es ca. 110 km dünn, in Flecken, sporadisch; bevorzugt im Sommer
F1 ca. 200 km tagsüber vorhanden, geht nachts mit F2-Schicht zusammen
F2 ca. 250…400 km Tag und Nacht vorhanden
Das Frequenznutzungsfenster für Funkwellen liegt zwischen der LUF und MUF. Schließt sich das Fenster, tritt ein so genannter Shortwave Fadeout auf.

Das Frequenznutzungsfenster für Funkwellen liegt zwischen der LUF und MUF. Physikalisch ist die LUF durch Dämpfung im Plasma tieferer Schichten bestimmt, die MUF dagegen durch Brechung, fast immer in der F2-Schicht. Tritt ein sogenannter Shortwave Fadeout auf, so schließt sich das Fenster kurzzeitig. Hohe Sende-Energie verschiebt die LUF abwärts und macht so das Frequenzfenster größer; sie beeinflusst aber die MUF nicht, abgesehen von Verbindungen über Streustrahlung, die nur bei sehr hoher Sende-Energie zustande kommen (Troposcatter-Verbindungen).

Die MUF (maximum usable frequency) ist deutlich größer als die kritische Frequenz foF2, weil bei schrägem Einfall schon eine geringere Richtungsänderung zur Totalreflexion ausreicht. Die minimale Grenzfrequenz, unterhalb derer die Dämpfung zu stark ist, wird als LUF (lowest usable frequency) bezeichnet. Sie hängt von der Ausrüstung (Sendestärke, Antennen, Empfindlichkeit des Empfängers) ab. Zu bestimmten Zeiten kann für gewisse Verbindungen die LUF über der MUF liegen, sodass kein Kurzwellenempfang möglich ist. So ist beispielsweise im Minimum des Sonnenflecken-Zyklus zur Mittagszeit in Mitteleuropa kein Empfang von südamerikanischen Sendern möglich.[2]

Ähnlich wie in der Meteorologie gibt es für die Ausbreitungsbedingungen der Kurzwellen einen Funk-Wetterbericht sowie Ausbreitungsvorhersagen, die nach Frequenz, Tageszeit, Jahreszeit und geografischem Zielgebiet aufgeschlüsselt sind.

Das Reflexionsverhalten ist vom Winkel der eintreffenden Strahlung des Senders abhängig. Sendeantennen werden auch unter Berücksichtigung dieses Aspektes entworfen und gebaut. Der niedrigste Abstrahlwinkel einer Kurzwellenantenne sollte nicht über 5 Grad liegen. Die F2-Schicht wird in einer Entfernung vom Sender von etwa 1500 bis 2000 km getroffen. Nach der Reflexion kann das Signal in einer Entfernung von 3000 bis 4000 km am Erdboden empfangen werden. Durch diese große Sprungdistanz entsteht ein Bereich – auf der Erdoberfläche ringförmig um den Sender, in dem das Signal nicht empfangen werden kann – die so genannte Tote Zone. Ist die Entfernung zwischen Sender und Empfänger größer als die einfache Sprungdistanz, sind mehrere Ionosphären-Reflexionen erforderlich, um diese Distanz zurückzulegen (Multi Hop).

(Artikel aus https://de.wikipedia.org/wiki/Kurzwelle)